Turbidity Currents on Steep Slopes: Application of an Avalanche-type Numeric Model for Ocean Thermal Energy Conversion Design
ثبت نشده
چکیده
Absln~--To minimize cold water pipe lengths, the most favorable land or fixed platform based Ocean Thermal Energy Conversions (OTEC) sites have subbottom slopes greater than 5 °. Observations at OTEC sites in Hawaii indicate that turbidity currents of an impulsive or episodic nature can occur with frontal speeds of several meters'per second. Such speeds and the attendant potential for sediment transport and abrasion along routes containing OTEC installations indicate that the pertinent features of these flows are an important design criteria for OTEC or any other steep-slope marine installation. To satisfy this need, models of oceanic turbidity flows and similar flows have been examined. The model that addresses OTEC steep-slope conditions most succinctly was developed originally by Hopfinger and Tochon-Dangny (1977) for snow avalanches on land. This two-dimensional avalanche model is used to estimate the speed and growth characteristics of potential turbidity currents downslope for various postulated marine conditions of initial flow density, height, volume, and length at slopes from 5 to 60 °. The areas of additional research required to increase reliability of the analyses are in the initiation and initial development of a turbidity plume, the mechanisms of sediment entrainment to and loss from the plume, and three-dimensional in addition to two-dimensional studies.
منابع مشابه
Modeling, Optimization and exergoeconomic analysis a multiple energy production system based on solar Energy, Wind Energy and Ocean Thermal Energy Conversion (OTEC) in the onshore region
In the present study, investigated an energy production system using three types of renewable energy: solar, wind and ocean thermal energy with climatic conditions and close to areas with high potential for the OTEC system, Has a good position in terms of wind speed and solar radiation, used them as energy sources. The proposed system is designed and evaluated based on the total daily electrici...
متن کاملThermal Behavior of a New Type of Multi-Layered Porous Air Heater
Based on an effective energy conversion method between gas enthalpy and thermal radiation, a multi-layered type of porous air heater has been proposed. In the five layered structure which is analyzed in this work, there are five porous layers which are separated by four quartz glass windows. The main layer operates as a porous radiant burner that products a large amount of thermal radiative ene...
متن کاملAn Approach for Operation Depth Reduction of an Underwater Glider Propelled by Ocean Thermal Energy
The underwater Gliders are a kind of autonomous vehicles that have a special role in ocean surveys which demand continuous monitoring and long endurance. Because of low energy consumption and long endurance, these vehicles are favorite for these missions. Among this, a type of gliders can harvest ocean thermal energy, causing significant endurance increase. These vehicles need at least 680 mete...
متن کاملA study of ocean thermal energy conversion in the southern Caspian Sea
Nowadays, in consideration of environmental issues and limitation of fossil fuels, there is a particular consideration of renewable energy including Ocean Energy, that can extracted going through various methods such as Wave Energy, Tidal Energy, Salinity Gradient, OTEC: Ocean Thermal Energy Conversion.Herein this research, operation of OTEC Method in Southern Caspian Sea has been discussed. Fo...
متن کاملExperimental Studies on Savonius-type Vertical Axis Turbine for Low Marine Current Velocity
Renewable energy resources need to be explored to maintain and meet energy demand and replace the slowly depleting fossil fuels. Malaysia, surrounded by sea with long coastlines, is poised to exploit the potential of this energy. This research work aims at designing a suitable device to extract energy from Malaysian sea current. Malaysia’s ocean has a low current velocity averaging 0.56 m/s, ...
متن کامل